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A mathemat ica l  model  is s u g g e s t e d / o r  the stress strain state and structure format ion  in drying of  a 

concentrated disperse system. The interrelated process o / d e f o r m a t i o n  o / t h e  med ium and  motion o / t h e  

liquid in a saturated region is described by equations o f  filtration consolidation. The rheological relationship 

o / a  saturated med ium is determined on the basis o f  the micromechanics  o f  the relative mot ion of  the 

particles. A sys tem of  nonlinear integrodifferential equations that describe the process is obtained and 

numerical  analysis of  the problem is carried out under different drying conditions. 

The stress-strain state (SSS) in drying of materials was investigated in [1-5 ]. It was assumed that the 

rheological properties of the medium were independent of the moisture content. The SSS in drying of a material 

with a different theological behavior in the dry and saturated states was studied in [6 ]. A description of the behavior 

of disperse systems in a saturated region on the basis of the micromechanics of the approach of the particles was 

suggested in [7 ]. An analysis of internal stresses in drying with allowance for the filtration flux was made in 18 1. 

Below, considering the micromechanics of the motion of the panicles, we simulate the development of the 

SSS in drying of concentrated dispersions in their interrelation with the filtration flow of the dispersion medium in 

the pore space. We obtain a system of nonlinear differential equations and state and solve the problem of drying 

a free thin plate (layer). We carry out a numerical investigation and reveal the influence of the basic dimensionless 

parameters on the internal stresses and structure formation. 

1. Mathematical Model. To describe the process of drying of deformed disperse systems in the zone of 

complete saturation, equations of filtration consolidation are used [9-I1 ]: 

f ( l . l )  
Ooq/Oxj -- Op/Ox i = O, 

O0/Ot + div q = 0 ,  (1.2) 

q = - / ( ~  Vpl, o) (Vp/IVpl), (1.3) 

f (1 .4)  
o O = o/j - /960 ,  

Equation (1.2) is written on the assumption that the matrix material and the liquid are incompressible, and, 

consequently, volumetric deformations of the medium occur only due to a change in the porosity. 

To close the system of equations (1.1)-( 1.3), rheological relations are needed. The presence of condensation 

contacts between the panicles in the dry region allows one to use elasticity theory with account for free shrinkage 

1121: 

o v o ii 1 (1.5) E etj - tij + - (ekk -- ekk ) O c r q -  1 + v 1 2v " 
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The mass balance of moisture on the evaporation surface gives an equation for determining the rate of 

evaporation-front motion Vn: 

p m V n  = - ( r n / m o )  Jr~ + Pqn"  (1.6) 

Since in the case considered volumetric deformations occur only due to changes in the porosity,  then 

d m /  ( l  - m )  = dO. 

Under  conditions of intense drying the following approximate equation is valid [13 l: 

[ D ] Ps rooD 
J"= RgT [I(t) + (IDi/D)61' [ D I = T .  

( 1 . 7 )  

2. SSS and Structure Format ion in Drying of a Disperse Layer .  Let us consider the drying of an originally 

homogeneous concentrated disperse layer. We assume that the process of evaporation from the layer  surface is 

independent  of the coordinates x, y in a Cartesian coordinate system (x, y, z) whose plane (x, y) goes through the 

middle plane of the plate. Then,  the moisture content and the SSS will depend only on the transverse coordinate  

z, and the following relations will be valid: 

a u - O  ( i ~ j ) ,  a x x = % y = c r ( z ) ,  c r = - O ,  

eij =- 0 (i ~ j)  , exx = eyy = e (z) , ezz (z) ~ O. 

(2.1) 

The  conditions of consistency of deformations [12] with account for Eq. (2.1) are reduced to the one 

condition d2~: /az  2 = 0,  and the rheological relation (1.5) for the dry  region takes the form 

o = E (e - e ° ) / ( l  - v ) .  (2.2) 

The shrinkage e ° of the material particle with the coordinate z is equal to deformation at the time t ( z )  of passage 

of the evaporation front through it e ° = E (z ° = z). 

The  motion of the particles in saturated disperse systems is determined by two main factors: the viscous 

flow of the dispersion medium in the gap between the particles and the forces of surface interaction [14 ]. In contrast  

to the forces of viscous resistance, the surface forces can both impede and promote approach of the particles, 

depending on the distance and physicochemical properties of the surfaces. 

We will represent  a macropoint by a set of spherical particles that are bound together by surface forces and 

whose dimensions are distributed according to a Gaussian law: 

99 (r) = (2:r (0)2) - 1 / 2  exp [ -  (r - ( r))2/(2 ({7)2], 

Having separated out a pair of particles of radius r from such a set, we will write the equations of their  relative 

motion without account for inertial forces [7 ]: 

e F v F i (t) + F (hi) + (hi, Ohi/Ot  ) = O ,  

( s )  x (r) 2 e ,~ f = " F, = ( S )  ( 0 ,  i = x , y , z .  

(2.3) 

On the basis of results obtained in [7] the rheological relations in the dry  and saturated regions can be 

represented in the following form: 

(z, t) = E (7) (l - v) -~ l e ( t ) - e  ° ( z )  l ,  z ° < z < h ;  (2.4) 
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r 3~,ur 2 Oh JrrG (h) 0 < z < z " o (2.5) 
o (t) - 2h (S)  at (S)  ' 

r (z, t) = 3~[ar2 Ohz zrrG (hz) 0 < z < z . o (2.6) 
°~ 2h~ (s)  0--7- ( s )  ' 

These equations involve both microparameters (h, r) and macroparameters (e, e°). The former characterize the 

state of the separate pair of particles and change within the limits of the macropoint, whereas the latter belong to 

the macropoint as a whole. Consequently, to close the system, in addition to the boundary condition on the edge 

of the free plate dried symmetrically on both sides 

h 
f a (z, t) d z  = 0 ,  (2.7) 
0 

a relationship between the micro- and macroscopic values is needed. For small deformations ((r) >> (h)) we have 

i ( ( h )  l (ho))/(r) ,  ez z = ((hz)  _ ( h o z ) ) / ( r )  ' (2.8) 

r+ r+ 

(h) = f h (rl  ~o (r) d r ,  (hz) = f h z (r) ~o (r) d r .  
¥ r 

The sought quantities in the problem are the pore pressure p ( z ,  t), stress cr(z, t), thickness of the inlerlayers 

h( t ,  r), hz(z ,  t, r), and position of the evaporation front z ° ( t ) .  

Integrating Eqs. (2.4) and (2.5) over the plate thickness with allowance for the condition on the edge (2.7), 

we obtain 

3a:~r 2 . Oh (t, r) ;rr h)] 

0 
z 1 
f p ( z , t )  d z + f  E( r / ) ( l  - v ) - I  [ e ( t ) - e  °(z)  l d z = 0 ,  
o o 

Z 

(2.9) 

and from Eq. (2.6), with allowance for Eq. (l.45 and Ozz = 0 (see Eq. (2.155, we have 

3.Tr.ptr 2 Oh z l t rG (hz) 

2h z (S)  Ot (S)  p (z ,  t) = 0 .  
(2.1o) 

We carry out further transformations: Eqs. (2.9) and (2.10) are multiplied by r - 2 h ( r ) ~ o ( r ) d r  and r - 2 h z ( z ,  

r ) ,p (r )dr ,  respectively, and integrated over r. Taking account of Eq. (2.8), we obtain 

d e / d t  = p (z,  t) d z  - E (r/) (1 - v) -1 [e (t) - e 0 (z) ] dz  + - - ,  
z 0 3Jr (r)  tzz 0 ( t )  3 ( r )  t z 

2(S}p(~,t) u 2(z,t) 2u I(~,t) 
+ (2.12) 
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r+ r+ 

u I (z, t) = f r -1 h z g ( h z ) ~ O ( r ) d r ,  u2(z, t) = f r - 2 h z ~ o ( r )  d r ,  
r. r .  

r+  r+  
- I  

v I ( t)  = f r hg (h) ~o (r) d r ,  v z (t) = f r -2 h79 (r) d r .  
r.  r .  

For the considered case of drying a thin disperse layer, Eqs. (1.2) and (1.6), with account for Eqs. (2.12) 

and (1.7), take the form 

O [  Op] 2 ( S )  u z ( z , t  ) 2 U l ( Z , t  ) de (2.13) 
O---z Kf (O) ~z - 3~ (r) It p (z, t) - 3It(r)  + 2 d~[ ' 

dz 0 m [ D l Ps 
p m  - -  = - - -  + p  

dt m 0 RgT (h - z 0 + c} [ D l / D )  
- K f  (0) 

0 
Z ~ Z  

(2.14) 

Thus, we have the system of equations (2.9), (2.10), (2.13), and (2.14) for determining the functions p(z ,  

t), z°( t ) ,  h(t,  r), and hz(z, t, r) with allowance for Eqs. (2.8) and (2.11) under the following boundary and initial 

conditions: 

z = O :  d p / O z = O ;  (2.15) 

o ) = Pc ( e )  ; ( 2 . 1 6 )  z = z : p (z 0 

t = 0 :  h =  h z = h  O(r ) ,  t = t z z = O ,  z O = h ,  (2.17) 

where ho is the initial distance between the particles, determined from the condition F c = rcrG(ho). For the 

permeability of the medium k we use the Kozeni formula [131 k = m3/(5So(1  - m)2), SO -- 3(1 - m ) / r .  

The shrinkage e°(z) is equal to the deformation e(t) at the time t(z) when the evaporation front is at the 

position z. Consequently, the shrinkage is variable over the plate thickness and is determined in the course of 

solution, e°(z) = e(z ° = z). To determine the dependence of the capillary pressure Pc on the deformation e, we 

should take into consideration the model of the structure of the disperse medium. For the model selected, i.e., an 

ensemble of spherical particles, the pressure Pc can be approximately represented as 

- 2a 
Pc (e) = (r) (e + (ho)/(r))  " 

To investigate the problem numerically, we represent the system of nonlinear integrodifferential equations 

(2.9), (2.10), (2.13), and (2.14) with the initial and boundary conditions (2.15)-(2.17) in dimensionless form: 

+ 2  

0 I OP (~, r)] 2U2 (~, 
_ 

r) e (¢, 2 
3x - 3x y U1 (~' r) + 

v____L_2 

1 - 

0 

1 ¢ eO 
f P(_~,r) d~-~t ,  f 9 0 ( e ( T ) -  (~))d~ 
0 0 + yv, J ; 

(2.18) 
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m (0) d~O = m (~ =~()) QJ(O) _ x.k 00__PP (~ =~0), 
dr m 0 ?_,OD/(IDIO0) + l O~ 

(2.19) 

3R OH ] 
~ Or R T g ( H )  

0 

(1 - ~ 0 ) -  f Pd~ +W f ¥'o l e ( r ) -  e O(~)]d~ = 0 ,  (2.20) 

2 H  z O~ R y g ( H z )  - 

with the boundary and initial conditions 

P(~ ,  r) = 0 

~ =  1: O P / O ~ = O ;  

(2.21) 

(2.22) 

C ° = : p (~0) = Pc (e) = - Ot / (e  + 61) ; 
(2.23) 

r = 0 :  H = H  z =  H O ( R ) ,  e = e z z = O .  

The effective and total stresses are determined from relations (2.4), (2.5), and (1.4): 

3R 2 OH , ~o 
Z f ( r ) -  2H Or R ) , g ( H )  < ~  < 1 ; 

x ( L O = x t ( O _ p ( L o ,  ~ o < ~ < i ;  

X ( ~ , r ) = g , ~ , o [ e ( r ) - e  ° ( ~ ) l ,  0 < ~ < ~ 0 " ,  

X:z(~ , r )  = P ( ~ , r ) ,  Xzz = O, ~0 < ~ < l .  

The following dimensionless variables and parameters are introduced: 

P = P / ( l P c  (0) I ) ,  ~ = t I Pc (0) I / ~ ,  ~ = 1 - z /hpl  , R = r ( r ) ,  

e = e / ] e + ]  , H = h / ( r ) ,  H z = h z / ( r  ) ,  Y~ = cr / ]p  c(O) l , 

J = i / i o .  , g ( n )  = G ( h ) / G +  , gz (Hz) = G ( h z ) / G  + ,  6 o = 6 /hp i  , ~0 o = E / E  o ,  

~c = k o / h  l 7 = G + / ( r )  [pc(0)l ~ --- Eo I~+l / ( t  - , , )  Ipc(0)l 6 t = (%)/(r) le+l 

R+ R+ 

V 2 = f R - 2 H ~ ( R )  d R ,  V 1 = f R -~ H g ( H ) ~ ( R ) d R ,  
R.(O R.(O 

R 4 R+ 

U 2 = f R - 2 H z q ~ ( R )  d R ,  U 1 = f R - I  
R,(r) R,(r) 

Hzg (Hz) ~ (R)  d R ,  

(2.24) 
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Fig. 1. Dependence of the critical vapor flux J .  on the time r: l) • = 10-4; 2) 
10-3; 3) 5 -10-3 ;  4) 10 -2. 

0 k(~ = ~ ° )  , ~ ( R )  = ~ p ( r ) ( r ) .  Q = io. /~/h IPc (0)1 p ,  ko = ko 

The  second boundary  condition for the pressure does not always have the form of Eq. (2.23). Two regimes 

are possible depending on the intensity of vapor removal. Calculations showed that if J is smaller than a certain 

value, then the pressure P(1,  r) on the surface turns out to be greater  than the capillary pressure Pc(e),  which 

corresponds to incompletely developed menisci. In this case (the first regime) the evaporation surface does not 

recede and equality is established between the filtration inflow of the liquid and the vapor flow. The  boundary  

condition for the pressure in this regime follows from Eq. (2.19) at ~0 _- 0 = const and has the form 

dP m (~ = 0) QJ (0) (2.25) 

¢; = o) = 'no 'ok° 

In the case of intense removal of the vapor flux J the pressure on the layer surface P ( I ,  r) becomes equal to the 

capillary pressure Pc, and the evaporation front recedes, which corresponds to the second regime of drying. We 

denote by J .  the magnitude of the vapor flux that separates the two regimes indicated and call it critical. In order  

to determine J . ,  it is sufficient to find the pressure field P(~, r) in the plate that satisfies, in addit ion to the 

boundary condition (2.8) at the plate center,  the two boundary conditions (2.23) and (2.25) at ~0 ___ 0. Here,  one 

of them is used to recover the pressure, and the other  to determine J . .  

By analyzing numerically problem (2.18)-(2.24),  we revealed the basic dimensionless parameters  ix, ~/,, 7) 

that influence its solution. The first parameter  is the ratio of the viscous resistance of the matrix due to the liquid 

motion in the gap between the particles to the filtration resistance; the second parameter  is the ratio of the elasticity 

modulus of the dry region to the capillary pressure, and the third parameter  is the ratio of the specific surface force 

to the capillary pressure. The dependence of the elasticity modulus E on the concentrat ion r /was taken to be linear, 

E = E0(1 + r/), and, consequently,  ~P0 = 1 + r/. 

Figure 1 presents the dependences of the critical vapor flux J .  on the time r for different values of the 

parameter  x. In the initial period of drying the magnitude of the critical flow decreases sharply irrespective of the 

value of the parameter  ~c. As is seen from Fig. 1, for small values of x (curves l ,  2) a time segment during which 

the quantity J .  changes little is typical. As the parameter  x increases, there is no flat portion in the graph (curves 

3, 4). The  presence of a "plateau" in the graphs of J . ( r )  for small values of x is explained by the fact that initially 

deformations e develop in plan in disperse media. At the same time, in the transverse direction ~ the compression 

is small, and one can even observe extension at the center of the plate. Then,  inflow of the liquid is formed due to 

penetration of transverse deformations ezz into the plate, which maintains an almost constant  magnitude of the flux 
jr. .  

As a result of a numerical investigation of the regime of drying with formation of a dry zone, we obta ined 

time dependences  of the position of the evaporation front G ° (Fig. 2) for different  values of the parameter  K. 

41"7 



0.8 

0.5 
0.4 

a2 
t I 

20 b b 

0.4 

~ ! ~ 0 " 3  ~ 1 4 l 

0 a2 ~4 a5  ~8 

Fig. 2. I n f l uence  of the p a r a m e t e r  x on the  t ime  d e p e n d e n c e  of the  

evaporat ion-front  position C°: 1) Jc = 10-3; 2) 5- 10-3; 3) 10 -2. 

Fig. 3. Distribution of the stresses Z over the plate thickness ~ (~p = 3; x = 10-2):  

1) C ° =  0; 2) 0.08; 3) 0.37; 4) 0.95. 

Attention should be paid to the fact that a change in the parameter  ~0 has no effect on the dependence  ~o(r). We 

also obtained distributions of stresses over the plate thickness (Fig. 3) for different positions of the evaporation 

front. Curve 1 (Fig. 3) corresponds to the initial time of drying, with the evaporation front on the layer  surface, tn 

this period the saturation region has both a region of extension and a region of compression (curves 1, 2). As the 

evaporation front recedes fa r ther  into the layer,  the stress in the saturat ion region becomes constant  due to 

equalization of the liquid pressure over the plate thickness (curves 3, 4, Fig. 3). Usually, in the process of drying,  

the dry  region is in a state of compression, and the level of compressive stresses grows with increase in the parameter  

~. On completion of drying, the s tructure of the dried medium will be inhomogeneous over the plate thickness, i.e., 

the medium is hardened  from the periphery to the center. 
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N O T A T I O N  

[D ], D, effective and molecular coefficients of diffusion; E, Eo, Young's modulus and its value at r /=  0; e, 

ezz, dimensionless deformations; FT/, the force determined by the effective macrostresses; F v, F, the force of the 

viscous resistance and of the surface interaction between the particles; F o capillary forces at the initial time of 

drying;  G, G+, specific energy  of the surface interact ion of plane particles and its max imum value; g, gz, 

dimensionless specific energies of the surface interaction of the particles; hpl, layer  thickness of the disperse 

medium; hi, shortest  distance between particles in the direction of the coordinate axes; h = hx = hy, hz, H, H.z, 

current  distances between particles and their dimensionless values; ho, HO, initial thickness of the liquid interlayers  

between the particles; (h), (hz), (ho) mean distances between particles at the macropoint; (ho), mean initial distances 

between particles and its dimensionless value; j, in, J0*, mass vapor flux, its component normal to the evaporation 

surface, and its critical value at the initial instant of time; J ,  J . ,  dimensionless vapor flux and  its critical value; k, 

k0, permeability and its initial value; k °, dimensionless parameter;  Kf, coefficient of filtration; l, depth of the dry 

zone; m0, m, initial and current  porosities; Pc, P, dimensionless capillary and current  pressures of the liquid; Pc, 

p, capillary and current  pressures of the liquid; Ps, pressure of the saturated vapor; Q, dimensionless constant;  q, 

qn, f i l t rat ion-rate vector and its component normal to the evaporation surface; Rg, universal gas constant;  R, 

dimensionless  radius of the particles; r_ ,  r+, R+, minimum and maximum radii of the part icles and their  

dimensionless values; R. ,  dimensionless critical radius of the particle; (r), r, mean and current  radii of the particles; 

So, specific surface of the particles; (S), cross-sectional area of a particle of mean radius; T, temperature;  t, time; 

u~, u2, U1, U2, vl, v2, Vi, V2, notation in formulas (2.11), (2.12), (2.18); V n, component of the evaporation front 
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velocity vector normal to the evaporation surface; x, y, z, axes of a Cartesian coordinate system; z °, coordinate of 

the evaporation front; a,  surface tension coefficient of the dispersion medium; /~, tortuosity coefficient; c3g, 

Kronecker delta; 6, thickness of the diffusion boundary layer on the outer surface of the specimen; eih eij, 

components of the deformation and shrinkage tensors; 0 ,  shrinkage of the material elements of the medium in the 

(x, y) plane; c, rzz, normal component of the deformation tensor along the x (or y) and z axes; y, 60, 61, x, ~p, ~P0, 

dimensionless parameters; ~, dimensionless coordinate; ~o, dimensionless coordinate of the evaporation front; r/, 

concentration of rigid contacts at the macropoint; 0 = ckk, first invariant of the macrodeformations;/~, viscosity of 

the dispersion medium; v, Poisson coefficient; p, liquid density; alp ~j, total and effective stresses in the porous 

matrix; a, Ozz, normal component of the stress tensor along the x (or y) and z axes; (r) 2, dispersion; T, time; ~o, ~ ,  

dimensional and dimensionless distribution functions. 
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